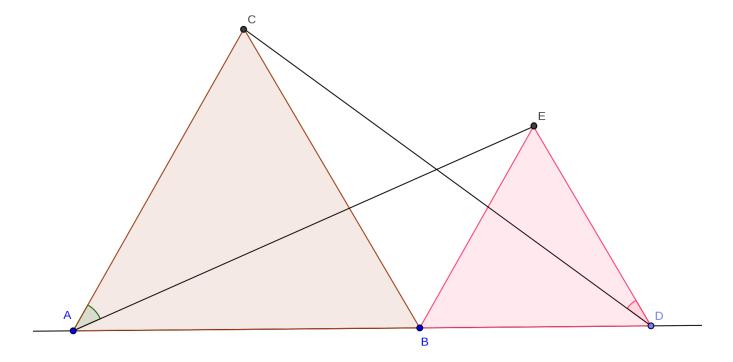
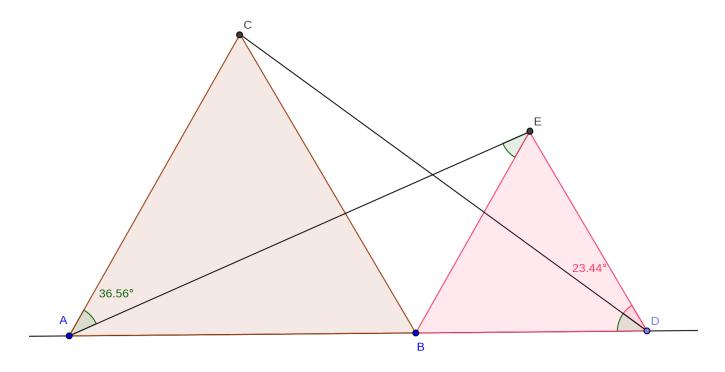
Enigme : Deux triangles, côte à côte, sont équilatéraux. Leurs bases sont portées par la même droite.

Trouve la somme des mesures des deux angles vert et rouge.



Solution 1:



Prouvons que la somme des angles \widehat{CAE} et \widehat{CDE} vaut toujours 60°.

Pour cela, montrons que $\widehat{CAE} = \widehat{AEB}$ (par des angles alternes-internes), puis que $\widehat{AEB} = \widehat{ADC}$ (par une rotation de centre B et d'angle 60°).

Démonstration:

Démontrons d'abord que (AC)//(BE). (Relation 1).

Au sommet B se trouve un angle plat, formé par trois angles adjacents, dont deux roses égaux à 60° , donc $\widehat{CBE} = 60^{\circ}$.

 \widehat{BCA} et \widehat{CBE} sont égaux (à 60°) et alternes-internes donc (AC)//(BE). (Relation 1).

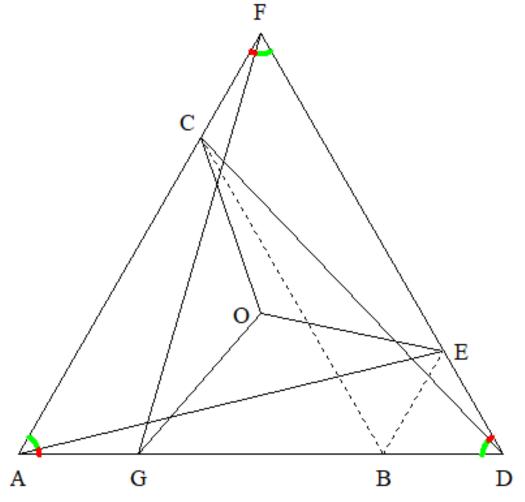
 \widehat{CAE} et \widehat{AEB} sont alternes-internes et (AC)//(BE) donc $\widehat{CAE} = \widehat{AEB}$ (Relation 2).

Par la rotation de centre B et d'angle 60° dans le sens horaire, l'image de A est C, l'image de E est D et l'image de B est B, donc l'image de \widehat{BEA} est \widehat{CDE} donc $\widehat{BEA} = \widehat{CDE}$ (Relation 3).

Des relations 2 et 3, on déduit que $\widehat{CAE} = \widehat{ADC}$, or \widehat{ADC} et \widehat{CAE} sont adjacents et forment un angle de 60°, donc $\widehat{CAE} + \widehat{CDE} = 60^{\circ}$, **CQFD.**

Au passage, il y a dans cette figure de nombreux triangles semblables, et deux des angles situés à l'intersection des droites (AE) et (CD) valent 60° (ce qui n'est pas intuitif au départ).

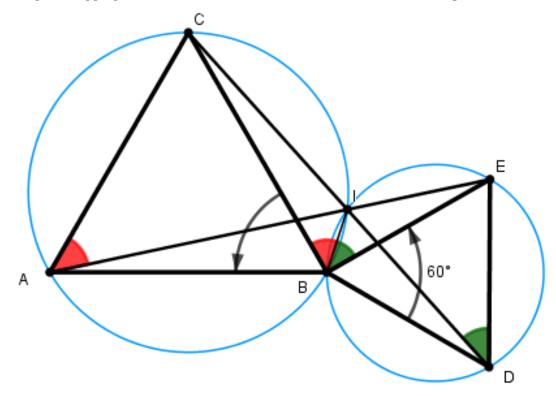
Solution 2 (rédigée par Imod) : je propose une solution dans le style preuve sans un mot :



On fait tourner le grand triangle équilatéral de 120° autour de son centre. (Source : https://www.ilemaths.net/sujet-calcul-d-aire-triangle-dans-un-carre-886590-2.html)

Solution 3 (rédigée par Mathafou) : moi je faisais une rotation de 60° autour de B, rotation qui transforme D en E et C en A donc [DC] en [AC], faisant donc entre eux un angle de 60° etc...

Cela peut s'appliquer ainsi à une extension de l'exo à des bases non alignées :



(Ici l'angle \widehat{CBE} mesure 90°, en ayant tourné BDE de 30°, mais on peut choisir n'importe quelle valeur). C'est vrai que la preuve (prétendue) sans mots de Imod est plus directe.

Sans mots j'ai eu du mal à voir qui est qui, et cette preuve n'en devient une que si on met (soi-même dans sa tête) les mots dessus.

4